Integrating spatial heterogeneity to enhance spatial temporal crop yield predictions

Name: Francis Michael Msangi Course: MSc Geospatial technologies Student number: 542565 Email: fmsangi@uni-muenster.de Supervisors: Main: Prof. Dr. Edzer Pebesma- IFGI Co-supervisor: Prof.Dr. Ana C. Costa- NOVA(IMS) Co-supervisor: Dr. Francis Muthoni (IITA)

Presentation outline

Motivation and Introduction

Motivation

- Spatial mapping and monitoring of crop yields is crucial for supporting decision making and ensuring food security
- Machine learning(ML), GIS and remote sensing have been integrated to make spatial mapping possible.
- However, in the prediction of crop yields the common ML algorithms often overlook the spatial heterogeneity inherent in landscapes leading to suboptimal estimations



Objective & Research questions

Main Objective

• The main objective of this research is to improve the accuracy and reliability of spatially explicit crop yield predictions in Zambia and Malawi by addressing spatial heterogeneity and effectively determining the areas in which predictions are reliable

Research Questions

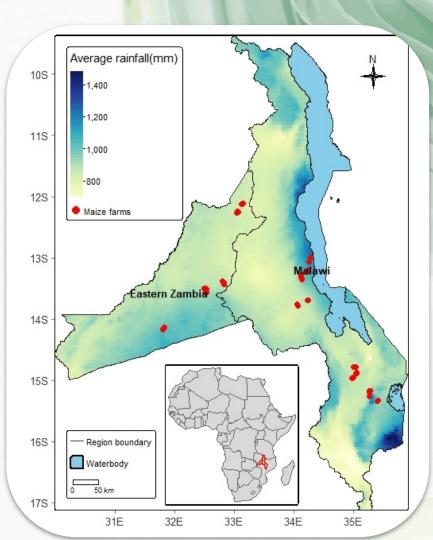
- Can addressing spatial heterogeneity by applying GWRF trained under target- oriented cross-validation strategy enhance spatial-temporal crop yield predictions?
- How can estimating the area of applicability of crop yield prediction models contribute to the effective extrapolation of agricultural technologies in Zambia and Malawi?

Study area & Data

Study area

Details

- located in Southern Africa
- Area coverage of approximately 170,000 square kilometres
- Characterized by uni-modal rainfall that spans from October to April



Data

Maize Crop yield data

Data collected in Malawi and Zambia with temporal resolution 2008/2009 to 2019/2020 season. Divided into two groups Conservation agriculture(CA) farms and Conventional practices(CP)

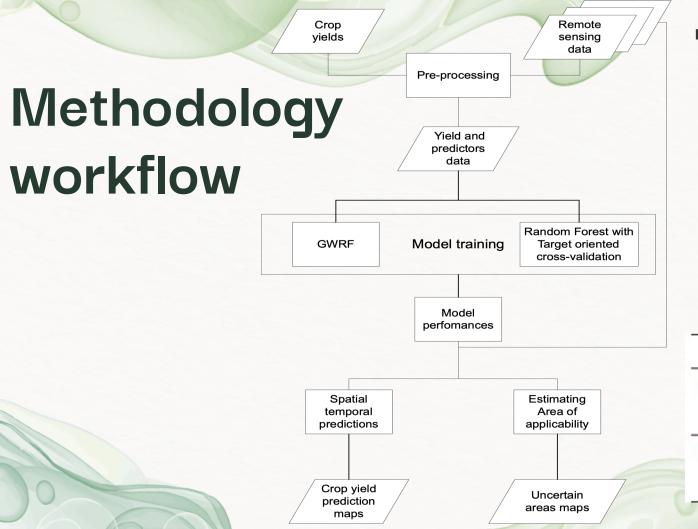
Remote sensing variables

Environmental conditions for the growing season Vegetation productivity Soil information Terrain information Socio-economic variables

Summary of remote sensing variables

Environmental conditions (Growing season)	Soil variables	Socio- economic variables	Vegetation productivity	Terrain Variabl es
Rainfall	Total Nitrogen, Soil Organic carbon, Bulk density, Cation exchange capacity, pH	Cattle density	Enhanced vegetation index	Digital Elevatio n model
Temperature(<mark>Maximum</mark> and Minimum temperatures)	Extractable Boron, Aluminum, Zinc, calcium, sodium, potassium,	Market access	Absorbed photosyntheticall y Active Radiation(FPAR)	
Actual evapotranspiration	Soil Texture, Clay content, Silt content, Sand content			

Methodology



KEY

GWRF- Geographically weighted random forest

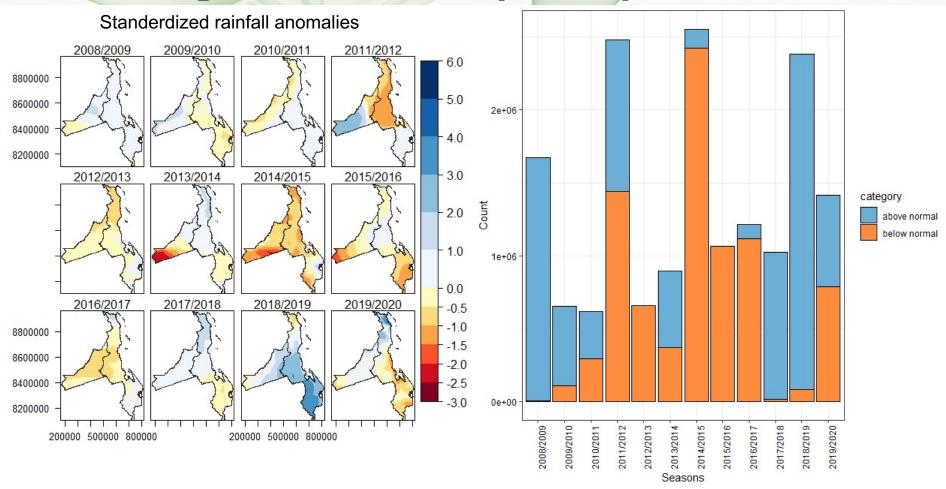
Target oriented cross validation strategy- Environmental blocking- 4 clusters using Kmeans

CA-Conservation agriculture **CP**-Conventional practice

GWRF shows better performances

	Model	RMSE	R^2
CP	RF	1409.902	0.013
	GWRF	1389.206	0.234
CA	RF	1547.705	0.037
	GWRF	1587.731	0.171

Selecting seasons for spatial predictions

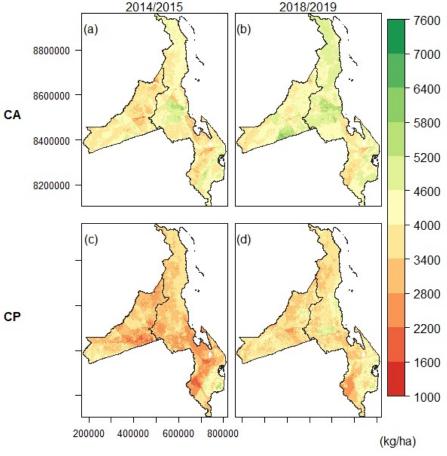


Results

Spatial temporal predictions

Details

- Higher yields in 2018/2019 compared to 2014/2015 season
- Higher yields for CA compared to CP



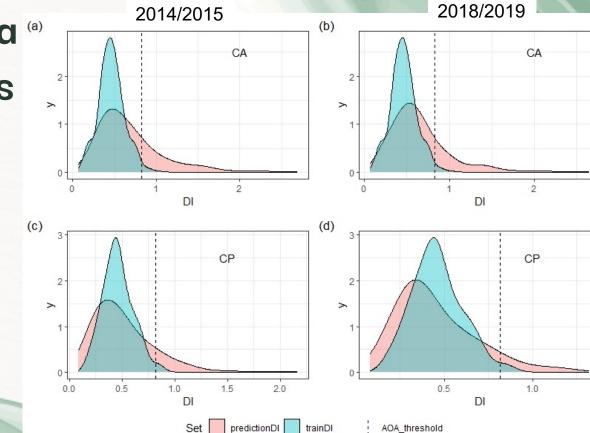
CP

Dissimilarity index(DI)

for training data ^(a) & new locations

Details Threshold values CA= · 0.825

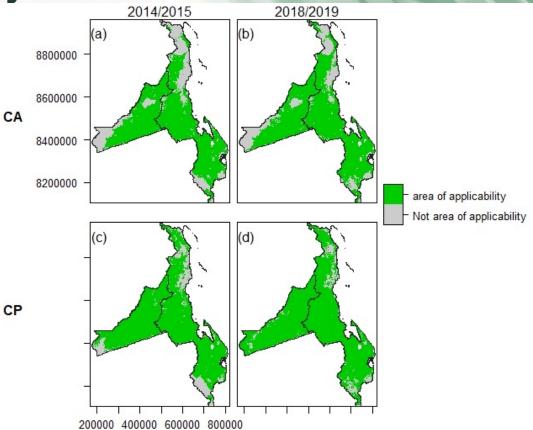
CP= .0.819



Area of Applicability

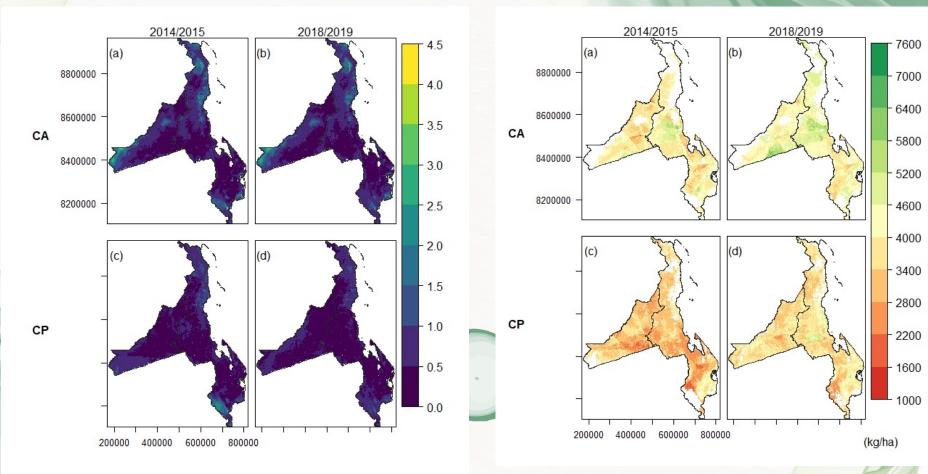
Details

 Model did not learn relationships in the north eastern part of Malawi and western part of Eastern Zambia



DI spatial distribution

Final predictions



Conclusion

Takeaway

Spatial heterogeneity & crop yields predictions

Indeed accounting for spatial heterogeneity can enhance spatial temporal crop yields.

Conservation agriculture practices increase maize yields

The Area of applicability

Can effective highlight areas where a ML model can make predictions reliably. This facilitates effective extrapolation of agricultural technology

Thanks!

Do you have any questions?

francismich196@gmail.com +255 688 960 833 +49 1522 806 5584 +34 624 696 788

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>